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 Circadian rhythms undergo high perturbations due to cancer progression and 

worsening of metabolic diseases. This paper proposes an original method for detecting 

such perturbations using a novel thoracic temperature sensor. Such an infrared sensor 

records the skin temperature every five minutes, although some data might be missing. 

In this pilot study, five control subjects were evaluated over four days of recordings. In 

order to overcome the problem of missing data, first four different interpolation methods 

were compared. Using interpolation helps covering the gaps and extending the 

recordings frequency, subsequently prolonging sensor battery life. Afterwards, a 

Cosinor model was proposed to characterize circadian rhythms, and extract relevant 

parameters, with their confidence limits. A divergence study is then performed to detect 

changes in these parameters. The results are promising, supporting the enlargement of 

the sample size and warranting further assessment in cancer patients. 
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1. Introduction  

Most biological processes follow circadian rhythms, with 

the standard period of about 24 hours. These 24-hour rhythms 

are driven by circadian clocks, which have been observed in 

plants, fungi, cyanobacteria, and humans [1, 2]. In mammals, 

each cell contains molecular clocks, whose coordination is 

ensured by the suprachiasmatic nuclei in the hypothalamus 

through the generation of rhythmic physiology. Such a 

Circadian Timing System (CTS) regulates rhythmically cellular 

metabolism and proliferation over the 24 hours.  

The body temperature follows circadian rhythms, that are 

tightly related to cancer development[3] [4]. Indeed, they play 

an important role in the coordination of molecular circadian 

clocks in various peripheral organs, such as lung, liver, kidney, 

and intestine, and could have an effect on tumors through their 

regulatory effects on Heat Shock Factor (HSF), Heat Shock 

Proteins (HSPs), and Cold-Induced Proteins [4, 5]. Moreover, 

it has been demonstrated that giving chemotherapy at an 

accurate circadian timing improves tolerance up to fivefold and 

to almost doubles antitumor efficacy, compared to constant 

rates or wrongly timed administrations, in both rodent models 

and cancer patients[6] [7]. In the same way, the destruction of 

the suprachiasmatic nuclei suppressed any circadian rhythm in 

body temperature in mice, which causes a 2-3 fold acceleration 

of experimental cancer progression [8]. On the other hand, the 

temperature circadian rhythms could be disrupted by anticancer 

medications, and molecular clocks are impaired, as a function 

of dose and circadian timing in mice [9, 10]. Therefore, the 

circadian rhythm of body temperature is a useful biomarker of 

CTS function[11] [12]. 

The relevance of monitoring core body temperature for CTS 

assessment has been approved in previous works, however they 

all suffer from a lack of non-invasive screening tools, which has 

limited testing in cancer patients [13, 14]. To overcome such a 

problem, one could use the skin temperature, which is 

correlated to core temperature. However, changes in skin 

temperature display an opposite pattern compared to that in core 

body temperature, but with a similar circadian rhythm.  

In our work, a non-invasive wearable sensor, Movisens® 

GmbH, Karlsruhe, Germany, has been used. This sensor 

monitors skin temperature for up to 200 hours, with the sensor 

able to be worn at different positions such as the hip, wrist, or 

chest. The temperature signals are collected at a relatively low 
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sampling frequency with this sensor, that is, one point every 

five minutes. Using such a low frequency is possible since 

temperature varies slowly over time. Also, a minimal memory 

is required and the battery life is extended, due to reduced 

energy consumption for the measurement device. However, 

having a low signal frequency produces more difficult 

complications. Moreover, sensor malfunction or a subject not 

wearing it for a period of time causes missing data in the 

signals.  

This paper proposes an original algorithm to analyze the 

circadian rhythms in skin temperature signals. It first develops 

an interpolation algorithm to set the signals to a higher 

frequency such as one sample per minute, and to fill any gap in 

the signals [15]. For this reason, a kernel-based machine 

learning algorithm is presented and compared to other classic 

interpolation methods. Afterwards, a rhythmometric modeling, 

using Cosinor models, is proposed. It aims to extract parameters 

such as the MESOR, the amplitude, the orthophase and the 

bathyphase from interpolated signals. The paper then proposes 

a divergence study over these features to detect changes caused 

by chemotherapy. Five healthy subjects’ temperature signals 

are involved in this study, as a prerequisite for subsequent 

investigations involving a larger number in healthy controls and 

cancer patients. 

2. Subjects and Methods 

2.1. Subjects and materiel 

In this study, three female and two male control subjects, 

aged 45.2 ±13.6 years, are considered. They were given a 

detailed description of the objectives and requirements of the 

study before the experiment, and they read and signed an 

informed consent prior to testing.  The infrared Movisens 

(GmbH - move III) sensor was positioned on the thorax of the 

subjects to monitor their skin temperature for four days. It 

measures 5.0 x 3.6 x1.7 cm3, and weighs 32 g. The sensor is 

composed of a tri-axial acceleration sensor (adxl345, Analog 

Devices; range: ±8 g; sampling rate: 64 Hz; resolution: 12 bit) 

embedded with a temperature sensor (MLX90615 high 

resolution 16bit ADC; resolution of 0.02°C). The recorded data 

is saved on a memory chip inside the sensor and transmitted to 

a server via GPRS. A hypoallergenic patch has been used to 

maintain the sensor in the upper right anterior thoracic area of 

the subjects. 

2.2.  Interpolation of temperature signals 

The temperature signals have a small frequency, with 

occasional missing data. Let 𝑋(𝑘𝑛)1≤𝑛≤𝑁 denote the 

temperature samples collected for a certain subject using the 

sensor, with 𝑘𝑛 in minutes. The aim of interpolation is to 

estimate a function 𝑋̂(. ), that computes the temperature at any 

time 𝑘, and which verifies the following: 

 𝑋̂: 𝑘 → 𝑋̂(𝑘)  𝑤𝑖𝑡ℎ  𝑋̂(𝑘𝑛) = 𝑋(𝑘𝑛)  𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 𝑁. (1) 

Different algorithms for interpolation such as linear, 

polynomial or cubic splines techniques exist in the literature 

[15, 16]. In the linear interpolation, temperature is represented 

by a straight line between any two consecutive collected 

measurements. Having 𝑘 ∈ [𝑘𝑛, 𝑘𝑛+1], for 𝑛 ∈ {1, … , 𝑁 − 1}, 

 𝑋̂(𝑘) = 𝑎𝑛 + 𝑏𝑛(𝑘 − 𝑘𝑛),                                       (2) 

with 𝑎𝑛 = 𝑋(𝑘𝑛) and 𝑏𝑛 =
𝑋(𝑘𝑛+1)−𝑋(𝑘𝑛)

𝑘𝑛+1−𝑘𝑛
. 

This technique is easy to implement, but it yields several 

functions, one per interval between two consecutive 

measurements. Moreover, it is disadvantageous for large time-

intervals due to the non-specification of the linear estimation. 

In the polynomial interpolation, temperature is represented by 

a single polynomial function, which fits the measured data. By 

using Lagrange polynomials, one obtains the following 

function: 

 𝑋̂(𝑘) = ∑ (∏
𝑘−𝑡𝑗

𝑡𝑛−𝑡𝑗
𝑗∈𝐼𝑁′

𝑗≠𝑛

) 𝑋(𝑡𝑛)𝑛∈𝐼𝑁′ ,            (3)     

where 𝑁′ ≤ 𝑁 is the degree of the obtained polynomial and 

𝐼𝑁′ ⊆ {1, … , 𝑁}. By taking 𝑁′ close to 𝑁, the obtained function 

is specific, but with highly complex computations. Cubic 

splines is the most commonly used interpolation technique. It 

computes a set of piece-wise polynomial functions that 

maximize the smoothness of the whole curve. The 𝑛-th splines 

function defined over the interval [𝑘𝑛, 𝑘𝑛+1[, for 𝑛 ∈ {1, … , 𝑁}, 

is given as follows: 

𝑋̂(𝑘) = 𝛼𝑛(𝑘 − 𝑘𝑛)3 + 𝛽𝑛(𝑘 − 𝑘𝑛)2 + 𝛾𝑛(𝑘 − 𝑘𝑛) + 𝛿𝑛,   (4) 

where: 

𝛼𝑛 =
𝑋̂′(𝑘𝑛+1)−𝑋̂′(𝑘𝑛)

6(𝑘𝑛+1−𝑘𝑛)
,  𝛽𝑛 =

𝑋̂′(𝑘𝑛)

2
,  𝛿𝑛 = 𝑋(𝑘𝑛), 

𝛾𝑛 =
𝑋(𝑘𝑛+1) − 𝑋(𝑘𝑛)

𝑘𝑛+1 − 𝑘𝑛
−

(𝑘𝑛+1 − 𝑘𝑛) (2𝑋̂′(𝑘𝑛) − 𝑋̂′(𝑘𝑛+1))

6
, 

where 𝑋̂′(. ) is the derivative of the temperature model 𝑋̂(. ). The 
values of the coefficients are then computed iteratively as 
shown in [2]. This technique is efficient, but proposes piece-
wise functions, that need iterative computations. 

TABLE I.    TYPICAL REPRODUCING KERNELS 

Kernel type  General expression 

Gaussian 𝜅(𝑘𝑖 , 𝑘𝑗) = exp (−
(𝑘𝑖 − 𝑘𝑗)

2

2𝜎2 
) 

Polynomial 𝜅(𝑘𝑖 , 𝑘𝑗) = (𝑐 + 𝑘𝑖 . 𝑘𝑗)
𝑞
 

Exponential 𝜅(𝑘𝑖 , 𝑘𝑗) = exp (
𝑘𝑖 . 𝑘𝑗

𝜎
) 

This paper proposes a kernel-based regression approach that 

generates a single function [17, 18]. A training database is first 

constructed using the 𝑁 collected temperature measurements 

(𝑘𝑛 , 𝑋(𝑘𝑛))
𝑛=1,…,𝑁

. Then a model is computed using this 

database, taking time as input and yielding temperature as 

output. This model is defined using the kernel-based ridge 

regression technique. The model is afterwards applied to other 

times, where temperature values are unknown, for 

interpolation. Consider a reproducing kernel 𝜅 defined from 

ℝ2 to ℝ and denote ℋ its reproducing kernel Hilbert space. 

Some commonly used reproducing kernels are given in Table I. 

where the kernel parameters 𝜎 and 𝑐 are positive and 𝑞 is a 

positive integer. Then the temperature model is defined by 

minimizing the regularized mean quadratic error between the 

model’s outputs and the measured data of the learning database: 

   min
𝜓∈ℋ

1

𝑁
∑ (𝑌(𝑘𝑛) − 𝜓(𝑘𝑛))

2𝑁
𝑛=1 + 𝜂‖𝜓‖ℋ

2 ,                (5) 

where 𝜂 is a regularization parameter that controls the tradeoff 

between the training error and the complexity of the solution 

and ‖. ‖ℋ
2  is the norm in the reproducing kernel Hilbert 

space[19]. According to the Representer theorem, that all 
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machine learning algorithms share, the minimization problem 

could be reduced to a more computation-friendly problem. 

Hence, the temperature model could be written as follows: 

 𝜓(. ) = ∑ 𝛼𝑛𝜅(𝑘𝑛, . )𝑁
𝑛=1 ,                                                    (6) 

 

where the coefficients 𝛼𝑛 are to be determined. Let 𝛼 denote 

the column coefficients vector whose 𝑛-th entry is 𝛼𝑛. By 

injecting the model expression in the minimization problem, 

one obtains a dual optimization problem whose solution is 

given by: 

  𝛼 = (𝐾 + 𝜂𝕀𝑁)−1𝐗,                                                          (7) 

where 𝐾 is a 𝑁-by-𝑁 matrix whose (𝑖, 𝑗)-th entry is given by 

𝜅(𝑡𝑖, 𝑡𝑗), 𝕀𝑁 is the 𝑁-by-𝑁 identity matrix and 𝐗 is the 

temperature column vector, whose 𝑛-th entry is given by 

𝑋(𝑘𝑛). Now that the model 𝜓 is defined for each temperature 

signal, the temperature value at a given time 𝑛 is estimated by 

𝑋̂(𝑘) = 𝜓(𝑘).  

The main advantage of the kernel-based approach remains in 

the fact that a single-function model is obtained, unlike the 

linear and cubic spline interpolations, where a piece-wise 

expression is obtained. In the following, and for simplicity, the 

notation 𝑋(𝑘) is used for the estimated signal, having a value at 

each minute, obtained after interpolation. 

2.3. Detection of rhythmicity 

The detection of rhythmicity is usually performed in the 

frequency domain . The spectral analysis using the “Fourier 

transform” is a well-known study to do this . In this 

analysis, any signal, regardless of its shape and properties, can 

be represented by a complex function of frequency that 

highlights the frequencies that make it up. By applying the 

inverse Fourier transform, the signal is then decomposed into 

an infinite sum of sine and cosine functions of infinite 

frequencies [22]. The signals could be deterministic such as 

periodic/non-periodic or random such as stationary/non-

stationary. A similar analysis for periodic signals is the Fourier 

series analysis, which represents a function as a sum of sine and 

cosine functions of different frequencies.  

In this paper, an algorithm based on Fourier analysis is first 

proposed for frequency and harmonic detection. This algorithm 

starts by estimating the fundamental frequency, the 

fundamental amplitude and phase, and the harmonic amplitudes 

and phases, to evaluate the periodogram. The term 

periodogram was introduced by Schuster in December 1934 

when Fourier analysis was used to estimate periodicity in 

meteorological phenomena . The technique was evaluated 

for the first time when inspecting circadian rhythms in the 

1950s to measure circadian rhythms of mice after blinding . 

The periodogram showed that periodic signals have a frequency 

spectrum consisting of harmonics. For instance, if the time 

domain repeats at f, the frequency spectrum will contain a first 

harmonic at f, a second harmonic at 2f, a third harmonic at 3f, 

and so forth. The first harmonic, which is the frequency at 

which the time domain repeats itself, is called the fundamental 

frequency, and has the highest amplitude. Periodograms and 

spectral density were originally used in chronobiology in the 

1960s [25]. 

In order to set the periodogram, a suitable window must be 

applied to the signal, to reduce side-lobes. For the proposed 

algorithm, a normalized Hanning window has been chosen [26] 

since this window does not disturb the position of spectral peaks 

in the spectral density, although the amplitude is decreased and 

the peak is larger. Having the periodogram and thus the 

fundamental and harmonic frequencies, the temperature signal 

is then modeled, using the Fourier series as follows: 

   𝑋̃(𝑘) = 𝑀 + ∑ 𝑎ℎ cos(ℎ𝜔𝑘) + 𝑏ℎ sin(ℎ𝜔𝑘)𝐻
ℎ=1 ,            (8)  

where 𝜔 is the angular frequency i.e. 𝜔 =
2𝜋

𝜏
, i.e. 𝜏 is the 

fundamental period (duration of one cycle) and 𝐻 is the number 

of the considered harmonics with the fundamental frequency. 

With respect to circadian rhythms, the rhythm persists in 

constant conditions with a period of around 24-hours, i.e. 𝜏 =
24 ∗ 60 = 1440 minutes. 𝐻 takes values from 1 to infinity. The 

higher 𝐻 is, the better the model 𝑋̃(𝑘) fits the observed value 

𝑋(𝑘). The parameters 𝑀, 𝑎ℎ and 𝑏ℎ could be computed using 

the computations of Fourier series. The main advantage of this 

technique is that one is able to determine the exact fundamental 

frequency, with its following ones, by analyzing the 

periodogram, obtained with the Fourier transform. However, it 

needs the data to be equidistant and to cover more than a single 

cycle, otherwise the analysis would be erroneous. 

One interesting method used for analyzing unequidistant 

and time-limited observations is the single Cosinor procedure. 

This study was developed to evaluate rhythmicity of un-

equidistant data series[27] [28], and is frequently used in the 

analysis of biologic time series that have expected rhythms. 

Cosinor uses the least squares method to fit a sum of sine 

functions to a time series, as least squares procedures do not 

have an equidistant data limitation. Practically, it considers the 

Fourier series model of (8) with a precise fundamental 

frequency, which corresponds to 24-hours, and number of 

harmonics and then computes the parameters 𝑀, 𝑎ℎ and 𝑏ℎ so 

as to minimize the error between the signal 𝑋(𝑘) and the model 

𝑋̃(𝑘). Let 𝑒(𝑘) be the residual corresponding to the value 𝑋(𝑘), 

that is, 

𝑒(𝑘) = 𝑋(𝑘) − 𝑋̃(𝑘), 
and consider the modeling error as the sum of the squared 

residuals (𝑆𝑆𝑅) for all the data, that is, 

 

𝑆𝑆𝑅 = ∑ 𝑒2(𝑘)

𝑘

= ∑ (𝑋(𝑘) − 𝑋̃(𝑘))
2

                                        

𝑘

 

          = ∑ (𝑋(𝑘) − 𝑀 − ∑(𝑎ℎ cos(ℎ𝜔𝑘) + 𝑏ℎ sin(ℎ𝜔𝑘))

𝐻

ℎ=1

)

2

.

𝑘

 

 

The parameters 𝑀, 𝑎ℎ and 𝑏ℎ are then obtained using least 

squares by setting the derivatives of the 𝑆𝑆𝑅 over each 

parameter equal to zero. Since the temperature follows a 

circardian rhythm, then the fundamental frequency corresponds 

to 24h. Figure 1 shows an example of a Cosinor model obtained 

with 𝐻 = 4. The obtained model will subsequently be used to 

compute significant rhythmometric parameters, as shown in the 

following paragraph.  

Once the temperature signals are modeled, using either 

Fourier series or Cosinor, some features are extracted from their 

sinusoidal representation, as will be shown in the following 

paragraph. 

http://www.astesj.com/
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Figure 1 Circadian Rhythm Model 

2.4. Features selection and divergence study 

Once the temperature signal is decomposed into cumulative 

sine functions, using Fourier series or Cosinor, the objective 

here is to determine the sinusoidality of the data. This requires 

the extraction of some features from the models by inspecting 

their graph plotted against time, as shown in Figure 1. When the 

model is composed of more than one trigonometric function, 

that is, the fundamental period and some harmonics, four 

features could be extracted [29]:  

• the MESOR (M), for “Midline Estimating Statistic Of 

Rhythm”, that is the mean of the model,  
 

• the amplitude (A) that is defined as the half of the difference 

between the maximum and the minimum of the model in 

one fundamental period, 
 

• and, finally, the phases of the maximum and the minimum 

of the composite model including harmonic terms, which 

are called the orthophase ΦO and bathyphase ΦB 

respectively. 

Figure 1 illustrates these features. For a control subject, 

these rhythmometric parameters vary slightly over time; 

whereas chemotherapy could produce significant modification 

in the circadian rhythm, which yields a divergence of one or 

more rhythmometric parameters. In order to detect this 

divergence, a sliding window algorithm is considered over the 

temperature signal 𝑋(𝑘) of a period of several days.  

Then, for each window, the signal is modeled using the 

cumulative sine functions, and the four rhythmometric 

parameters are extracted. A statistical test, such as an exact 

Fisher test, Wilcoxon test or another, is then applied to check 

whether the values through the window diverge from their 

previous values. This study is motivated by the perturbation of 

the circadian rhythm due to chemotherapy, which induce a 

divergence of the statistical distributions of the extracted 

rhythmometric parameters.  

3. Results 

This section starts with the illustration of the effectiveness of 

the interpolation techniques. To this end, the collected 

temperature signals of two subjects out of the five are 

considered. These two have a frequency of one sample per 

minute over four days, whereas the remaining are measured with 

a rate of one sample every five minutes. An example of a skin 

temperature signal while wearing the IR sensor for four days, for 

a control pattern with an expected pattern is shown in Figure 2.  

Table II. Interpolation results 

Interpolation 

methods 

Interpolation mean error ± SD 

0 

segment 

removed 

1 

segment 

removed 

2 

segments 

removed  

3 

segments 

removed 

Linear 0.13±0.7 0.16±0.8 0.18±0.7 0.19±0.8 
Cubic splines 0.15±0.7 0.17±0.8 0.19±0.8 0.25±0.9 

Polynomial 0.80±1.4 0.80±1.4 0.81±1.4 0.81±1.4 

Kernel-based 0.06±0.2 0.08±0.3 0.11±0.3 0.13±0.4 
 

 

Figure 2 Skin temperature signal 

 

Figure 3 Kernel-based interpolation signal (dashed line) and its true measured 

one (straight line) for one subject over five hours, i.e. 300 minutes  

In order to compare the interpolation approaches, the signals 

of the two subjects were divided into segments of 1440 minutes, 

i.e. one-day length, leading to eight segments. Then, these 

segments are resampled by taking one point every five minutes, 

leading to segments of 288 points. Thereafter, the linear, 

polynomial, cubic spline and kernel-based interpolation 

techniques were applied over these segments and the results are 

compared to the original observed signal. For the kernel-based 

interpolation, a Gaussian kernel was used, using a cross-

validation algorithm to select the optimal values of the 

bandwidth σ and the regularization parameter η according to the 

learning data . The mean errors for the interpolations are 

shown in Table II. These were computed by averaging the 

absolute difference between the observed and the estimated 

signals for the eight segments. In order to simulate the missing 

data, a 30-min segment was subsequently removed from the one-

day length segment. This 30-min segment corresponds to six 

consecutive points among the 288-point segments. Then, two 

and three 30-min segments are removed. These segments were 

randomly selected within each one-day length segment. Table II 

shows the results for segments with no missing data (0 segment 

removed), one 30-min segment removed, two segments 

removed, and three segments removed. It is worth noting that 

simulations are performed 50 times and errors are averaged over 

all results, since the removed segments are selected randomly. 

The table shows that the Kernel-based algorithm yields better 

results with less estimation error in all cases, which is expected 

due its malleability and its adaptation to the curve, even under 

non-linear conditions.  

The measured temperature signal for a typical subject for a 

five-hour period is shown in Figure 3. The figure also shows the 

interpolated signal obtained with the kernel-based interpolation. 

0 1000 2000 3000 4000 5000 6000
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The plot shows that the computed signal is close to the measured 

one, with a smooth curve produced. 

Then, the objective is to illustrate the rhythmometric modeling 

techniques, which use the Fourier series or Cosinor. To this end, 

we consider the 5 temperature signals over a 4-day period, 

having passed the interpolation phase, i.e. the signals have no 

gaps, with a rate of one sample per minute. We start by applying 

the Fourier series, taking the fundamental period to be equal to 

24 hours, i.e. 1440 minutes, followed by 3 harmonics, i.e. 12 

hours, 8 hours and 6 hours. We consider that the modeling error 

is the average of the absolute differences between the 4-day 

temperature signals and their modeled ones for the 5 signals. In 

this case, the modeling error of the Fourier series technique with 

a 24-hour period is equal to 0.77. We then apply the Fourier 

transform to the signals to obtain their periodograms. These 

computations showed that the local maxima of the spectral 

energy are not obtained exactly at the frequencies 1/24, 1/12, 1/8 

and 1/6, but very close to them. 

 

Figure 4 Periodogram generated by the Fourier analysis of the time series 

Figure 4 shows a periodogram obtained for a certain subject, 

where the fundamental frequency is equal to 1/23.5. Let 𝑃𝑚𝑎𝑥  be 

the fundamental period obtained by taking the maximal point of 

the periodogram, i.e. 𝑃𝑚𝑎𝑥  is very close to 24 hours. If we take 

𝑃𝑚𝑎𝑥  and the following three local maxima, and perform the 

inverse Fourier transform, the modeling error decreases to 0.73, 

which was expected since this way more information is 

considered in the modeling. Having the fundamental period not 

equal to 24h is related to the fact that only four cycles (4 days) 

are considered, which is not enough for Fourier analysis. 

Afterwards, by applying Cosinor computations, while taking the 

fundamental period equal to 24h, and considering the following 

3 harmonics, the modeling error is the least, being equal to 0.53. 

This shows the power of such a method with limited-duration 

signals. 

 

Figure 5 Temperature modeled signals using the Fourier series with a 24h 

period in thin dashed line, the Fourier transform with a 23.5h period in thin 

straight line and the Cosinor in thick dashed line, and the original signal in thick 
straight line. 
 

Figure 5 shows the modeled signals in a thin dashed line for the 

Fourier series using a 24h period, a thin straight line for the 

Fourier transform using a 𝑃𝑚𝑎𝑥 = 23.5h period and a thick 

dashed line for the Cosinor analysis. It also shows the original 

signal in thick straight line, for a one day period going from 5 

a.m. till 5 am. the following day. The curves show that the 

obtained signals follow the original one with a small modeling 

error. The rhythmometric parameters, i.e. orthophase and 

bathyphase, are then computed. Table III shows their mean 

values in degrees with the standard deviations over the 5 signals. 

Here the parameters are extracted from the rhythmometric 

models obtained for the whole 4-days signals. As expected, 

considering the fundamental period 𝑃𝑚𝑎𝑥  from the periodogram, 

modeling leads to a difference in the characteristics equivalent 

to 30 minutes, whereas both Fourier series and Cosinor lead to 

close values. This study shows that the Cosinor computations have 

promising results, to be validated with more signals later on.     

4. Discussion  

This paper proposed a longitudinal evaluation of skin 

temperature measurement, collected using a thoracic sensor. 

The collected signals have a sampling frequency of one point 

every five minutes, with a length of four days for control 

subjects. At a first phase, we performed interpolation, using a 

kernel-based machine learning technique, to resample the 

signals to a higher frequency of one point every minute and to 

fill in the gaps in the measured signals. This step is crucial for 

the following data processing techniques. A rhythmometric 

study is then followed up on resampled signals, using either a 

Fourier representation or Cosinor. A Fourier analysis with the 

Fourier transform and the Fourier series is first proposed to 

model the signals, then a Cosinor model is constructed using 

Fourier analysis and least squares computations. The advantage 

of Cosinor remains in its robustness against un-equidistant and 

low-duration data, which is not the case for Fourier analysis. 

Rhythmometric parameters such as MESOR, amplitude, 

orthophase and bathyphase, are then extracted using the 

obtained model. For a given temperature signal of a given 

subject, such computations are performed for each sliding 

window of the signal, leading to a set of random variables that 

are the rhythmometric parameters. Then a divergence study is 

applied to detect any perturbation of the rhythm. In fact, 

chemotherapy can alter the circadian rhythm of the patients, 

therefore it is expected in that case to observe a divergence of 

the distributions of the rhythmometric parameters between the 

time span on chemotherapy and that before or after it. To detect 

such divergence, we can separate each parameter values into 

two sets (on or off chemotherapy), then apply a statistical test 

to detect the divergence between their distributions. This study 

is promising since chemotherapy-induced perturbations have 

been documented for over 15 anticancer drugs in experimental 

models, and for several drug combination protocols in cancer 

patients [6 14 15].  

The kernel-based interpolation phase was validated using 

different cases of missing data in the signals, and by comparing 

them to well-known interpolation methods such as linear, 

polynomial and cubic splines. A comparison between the 

rhythmometric modeling techniques is then conducted, 

showing that Cosinor analysis leads to fewer modeling errors. 

Having only five signals with a 4-day duration is not enough to 

draw conclusions, however the results are promising for future 

works. Thus a larger study involving more healthy controls and 
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Table III. Rhythmometric parameters  

Mean (±SD) 
Fourier 

series 

(24h) 

Fourier 

transform 

(𝑷𝒎𝒂𝒙) 

Cosinor 

model 

(24h)  

Orthophase 96.9±0.6 104.1±1 97.8±0.5 

Bathyphase 27.58±0.8 38.8±0.8 28.4±0.5 
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cancer patients is planned to further determine the relevance of 

the methodology developed here and the minimum number of 

harmonics. It should be possible to evaluate the effect of 

harmonics such as 12h, 8h, and 6h, and even to use only specific 

harmonics of varying frequency in order to determine the exact 

moment when the circadian rhythm is modified. Advanced 

processing such as the goodness of fit and the rhythm detection 

will also be applied on the signals using the F-test. Moreover, 

an evaluation of the IR sensor is also to be done, to verify if the 

observed temperature with such a sensor remains a mirror of the 

central temperature.  

5. Acknowledgments 

The authors would like to thank all clinicians, clinical 

research associates and technicians for their involvement in the 

device design and the protocol definition, set-up and 

monitoring. This work was supported by the Champagne-

Ardenne Regional Council; PICADO project (Projet Innovant 

pour le Changement d’Ampleur de la Domomédecine). 

References 

[1] Panda, S., Hogenesch, J.B., and Kay, S.A.: ‘Circadian rhythms from flies 

to human’, Nature, 2002, 417, (6886), pp. 329-335 
[2] Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., 

Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., Maywood, E.S., 

Hastings, M.H., Baliga, N.S., Merrow, M., Millar, A.J., Johnson, C.H., 
Kyriacou, C.P., O/'Neill, J.S., and Reddy, A.B.: ‘Peroxiredoxins are 

conserved markers of circadian rhythms’, Nature, 2012, 485, (7399), pp. 

459-464 
[3] Greene, M.W.: ‘Circadian rhythms and tumor growth’, Cancer Letters, 

2012, 318, (2), pp. 115-123 

[4] Li, X.-M., Delaunay, F., Dulong, S., Claustrat, B., Zampera, S., Fujii, Y., 
Teboul, M., Beau, J., and Lévi, F.: ‘Cancer Inhibition through Circadian 

Reprogramming of Tumor Transcriptome with Meal Timing’, Cancer 

Research, 2010, 70, (8), pp. 3351-3360 
[5] Reinke, H., Saini, C., Fleury-Olela, F.., Benjamin, I.J., and Schibler, U.: 

‘Differential display of DNA-binding proteins reveals heat-shock factor 1 

as a circadian transcription factor’, Genes Dev, 2008, 22, (3), pp. 331-345 
[6] Levi, F., Altinok, A., Clairambault, J., and Goldbeter, A.: ‘Implications of 

circadian clocks for the rhythmic delivery of cancer therapeutics’, Philos 

Trans A Math Phys Eng Sci, 2008, 366, (1880), pp. 3575-3598 
[7] Levi, F., Okyar, A., Dulong, S., P.F., and Clairambault, J.: ‘Circadian 

timing in cancer treatments’, Annu Rev Pharmacol Toxicol, 2010, 50, pp. 

377-421 
[8] Filipski, E., Li, X.M., and Levi, F.: ‘Disruption of circadian coordination 

and malignant growth’, Cancer Causes Control, 2006, 17, (4), pp. 509-
514 

[9] Ahowesso, C., Li, X.M., Zampera, S., Peteri-Brunback, B., Dulong, S., 

Beau, J., Hossard, V., Filipski, E., Delaunay, F., Claustrat, B., and Levi, 
F.: ‘Sex and dosing-time dependencies in irinotecan-induced circadian 

disruption’, Chronobiol Int, 2011, 28, (5), pp. 458-470 

[10] Ohdo, S., Koyanagi, S., Suyama, H., Higuchi, S., and Aramaki, H.: 
‘Changing the dosing schedule minimizes the disruptive effects of 

interferon on clock function’, Nat Med, 2001, 7, (3), pp. 356-360 

[11] Innominato, P.F., Roche, V.P., Palesh, O.G., Ulusakarya, A., Spiegel, D., 
and Lévi, F.A.: ‘The circadian timing system in clinical oncology’, 

Annals of Medicine, 2014, 46, (4), pp. 191-207 

[12] Scully, C.G., Karaboué, A., Liu, W.-M., Meyer, J., Innominato, P.F., 
Chon, K.H., Gorbach, A.M., and Lévi, F.: ‘Skin surface temperature 

rhythms as potential circadian biomarkers for personalized 

chronotherapeutics in cancer patients’, Interface Focus, 2011, 1, (1), pp. 
48-60 

[13] Ortiz-Tudela, E., Martinez-Nicolas, A., Campos, M., Rol, M.A., and 

Madrid, J.A.: ‘A new integrated variable based on thermometry, actimetry 
and body position (TAP) to evaluate circadian system status in humans’, 

PLoS Comput Biol, 2010, 6, (11), pp. e1000996 

[14] Duffy, J.F., Dijk, D.-J., Klerman, E.B., and Czeisler, C.A.: ‘Later 
endogenous circadian temperature nadir relative to an earlier wake time 

in older people’, American Journal of Physiology - Regulatory, 

Integrative and Comparative Physiology, 1998, 275, (5), pp. R1478-
R1487 

[15] Flores-Tapia, D., Thomas, G., and Pistorius, S.: ‘A comparison of 

interpolation methods for breast microwave radar imaging’, Conf Proc 

IEEE Eng Med Biol Soc, 2009, 2009, pp. 2735-2738 

[16] Chang, N.F., Chiang, C.Y., Chen, T.C., and Chen, L.G.: ‘Cubic spline 

interpolation with overlapped window and data reuse for on-line Hilbert 

Huang transform biomedical microprocessor’, Conf Proc IEEE Eng Med 
Biol Soc, 2011, 2011, pp. 7091-7094 

[17] Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J., and Snoussi, 

H.: ‘Kernel-based machine learning using radio-fingerprints for 
localization in wsns’, Aerospace and Electronic Systems, IEEE 2015, 51, 

(2), pp. 1324-1336 

[18] Vapnik, V.N.: ‘The nature of statistical learning theory’ (Springer-Verlag 
New York, Inc., 1995. 1995) 

[19] Aronszajn, N.: ‘Theory of reproducing kernels’, Trans. Amer. Math. So, 

1950, 68 pp. 337-404 
[20] Michel Cosnard, J.D., Alain Le Breton ‘Rhythms in Biology and Other 

Fields of Application : Deterministic and Stochastic Approache’ (1983. 

1983) 
[21] Bloomfield, P.: ‘Fourier Analysis of Time Series: An Introduction, ’ (New 

York ;Wiley 2000, . ) 

[22] Fourier, J.B.J.: ‘Théorie analytique de la chaleur’ (1822. 1822) 
[23] Bartels, J.: ‘Arthur Schuster's work on periodicities’, Terrestrial 

Magnetism and Atmospheric Electricity, 1934, 39, (4), pp. 345 
[24] Halberg, F., Visscher, M.B., and Bittner, J.J.: ‘Relation of visual factors 

to eosinophil rhythm in mice’, Am J Physiol, 1954, 179, (2), pp. 229-235 

[25] Panofsky, H., & Halberg, F.: ‘Thermo-variance spectra; simplified 
computational example and other methodology. II’, Exp Med Surg, 1961, 

19, pp. 323-338 

[26] Nuttall, A.: ‘Some windows with very good sidelobe behavior’, IEEE 
Transactions on Acoustics, Speech, and S. Processing, 1981, 29, (1), pp. 

84-91 

[27] Cornelissen, G.: ‘Cosinor-based rhythmometry’, Theoretical Biology & 
Medical Modelling, 2014, 11, pp. 16-16 

[28] Halberg, F., Tong, Y.L., and Johnson, E.A.: ‘Circadian System Phase - an 

aspect of temporal morphology : procedures and illustrative examples’ 
(Springer-Verlag, 1965. 1965) 

[29] Bingham, C., Arbogast, B., Guillaume, G.C., Lee, J.K., and Halberg, F.: 

‘Inferential statistical methods for estimating and comparing cosinor 
parameters’, Chronobiologia, 1982, 9, (4), pp. 397-439 

 

http://www.astesj.com/

	1. Introduction
	2. Subjects and Methods
	2.1. Subjects and materiel
	2.2.  Interpolation of temperature signals
	2.3. Detection of rhythmicity
	2.4. Features selection and divergence study

	3. Results
	4. Discussion
	5. Acknowledgments
	Word Bookmarks
	article1.body1.sec2.sec4.sec3.p1


